Al-ion Battery Electrodes
Positive
A good portion of the research on Al-ion batteries was directed at finding suitable positive electrodes for Al-ion intercalation. Despite the small size of the Al3+-ion, there are relatively few materials that exhibit reversible Al-ion intercalation, because of the high charge density of the trivalent ion
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.enchem.2020.100049 |
---|
|
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1039/c7ta01018d |
---|
|
. Successful reversible intercalation was achieved by numerous types of carbon electrodes as well as some metal compounds
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.enchem.2020.100049 |
---|
|
, including Mo
6S
8 DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1021/acs.chemmater.5b01918 |
---|
|
, VO
2 and TiO
2 DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.ssi.2019.115017 |
---|
|
, amongst numerous others (but few relative to other battery chemistries).
Carbon structures such as graphite, graphene and carbon nanotubes as well as other carbon based materials are amongst the most studied positive electrodes for Al-ion batteries. Graphene and graphite materials exhibits high capacity for Al-ion intercalation, a high discharge potential with metallic Al (higher than 1.7 V; in comparison a commercial Li-ion batteries exhibit typically around 3.7 V
) and a high discharge capacity due to fast diffusion of intercalation ions
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1002/anie.201802595 |
---|
|
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.electacta.2016.02.144 |
---|
|
. Graphene is considered the superior one of the two
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1002/anie.201802595 |
---|
|
, however, the reason is seldom addressed in literature. In addition, it is somewhat ambiguous what certain authors consider graphene and what graphite.
The ion intercalating into graphitic electrodes is not Al3+ but instead AlCl4- (with chloride based liquid ionic electrolytes) with only one electron transfer per intercalated ion
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1038/nature14340 |
---|
|
. Pairing graphite electrode with an Al electrode and ionic liquid electrolyte results in a dual-ion battery, where the electrolyte is also participating in the charge storage reaction
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.electacta.2016.02.144 |
---|
|
.
Figure 2 illustrates the working mechanism of such a dual-ion battery.
The various metal compound electrodes generally exhibit two storage reactions named insertion and conversion. In insertion, either Al3+-ions or AlCl4--ions are intercalated (or inserted) into the electrode structure, while in conversion, the reaction modifies the electrode structure itself.
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.enchem.2020.100049 |
---|
|
Positive electrode materials exhibiting Al
3+-ion intercalation include, for example, TiO
2 DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.jechem.2020.03.032 |
---|
|
, and MoS
2 DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1021/acsami.8b00100 |
---|
|
. Se doped Cu exhibits AlCl
4--ion intercalation
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1021/acsami.8b03259 |
---|
|
, while a VOCl based material exhibits both Al
3+-ion or AlCl
4--ion intercalation simultaneously
DOI cite |
---|
superscript | false |
---|
addLink | true |
---|
citeID | 10.1016/j.jallcom.2019.07.324 |
---|
|
.
Figure 3 shows the crystal structure of TiO
2 with the intercalation sites for Al.