Scalable Byzantine Consensus via Hardware-assisted Secret Sharing

Jian Liu, Wenting Li, Ghassan Karame, N. Asokan

- Blockchain community is trying to add Byzantine fault-tolerant (BFT) protocols into blockchains;
- Existing BFT protocols can only scale to tens of nodes due to their $O(n^2)$ message complexity;
- We propose the fastest and most scalable BFT protocol to-date.

FastBFT Overview:

- Using SGX-assisted secret sharing to reduce message complexity to $O(n)$ without using any public-key operations;
- Balancing load by arranging nodes in a tree topology;
- Requiring only a subset of nodes to actively run the protocol;
- Using failure detection to avoid frequent view-changes.

A framework that captures various design choices:

Fair Payments

- Fair exchange: exchange digital “items” fairly -- either each player gets the other’s item, or neither player does.
- Enabling fairness in existing cryptocurrencies is an essential but insufficiently explored problem.
- Timeout-based schemes do not ensure strong fairness:
 - timeout reached after payee broadcasts his signature but before it is confirmed in blockchain.

Our approach: a new fair payment method that provides strong fairness: payer creates a transaction with some digital money that is spendable when
 - payee provides his “item”, or
 - payer issues an abort transaction.

Anonymous Payments

- An anonymous payment scheme [1] was built on top of the timeout-based fair exchange.
- We found a flaw: breaks fairness and security.

Our approach: fair payment protocol without timeouts