Secure Systems Groups

Demo Day 2017
N. Asokan, Tuomas Aura, Valtteri Niemi
“State of the Union”
Who are we?

Aalto University
• 2 professors
• 6 (3+2+1) postdocs
• Several PhD/MSc students and research interns

University of Helsinki
• 1 Professor
• 2 senior researchers
• 2 postdocs
• Several PhD/MSc students
How are we funded?

CyberTrust SHOK (Aalto and UH) (→ summer ’17)

3 Academy of Finland projects:
 ConSec (→ summer ’17), SELIoT (spring ’17 →), SecureConnect (autumn ’16 →)
 BCon (autumn ’17 →) (Blockchains, Consensus and Beyond)

2 Tekes projects:
 CloSer (autumn ’16 →), Take5 (autumn ’16 →)

Intel Collaborative Research Center for Secure Computing (Aalto and UH Nodes)

Other industry collaboration: NEC Labs, Ericsson (Aalto), Huawei (UH)

Basic funding from universities (Aalto and UH)
What do we work on?

(Mobile) Platform Security
Machine Learning and Security
Cloud and IoT Security
Blockchains and consensus
New direction: Stylometry and security

5G Security

Security Protocol Engineering
Network Security
Security for Ubiquitous Computing
What do we work on?

- Security
- Usability
- Deployability/Cost
Where are we publishing?

Top-tier infosec venues: ACM CCS

Focused thematic venues: PETS, SECON

Other venues: ACM ASIACCS, IEEE IC, NSS

Recognition: Best poster, IEEE ICDCS
Honorable mention for best paper, ACM ASIACCS

Self evaluation: Good but room to improve
What are we teaching?

Information Security courses
• Bachelor level course on Information Security
• MSc level courses on network security, cryptography, mobile system security
• Seminar and laboratory courses
• MOOC: Cybersecurity Base with F-Secure
• Shared courses between Aalto and UH

Courses taught by industry experts
• Reverse engineering Malware(F-Secure)

Recognition: Teacher of the year (Aura)
Top-5 among small courses
Best Infosec thesis in Finland
Helsinki-Aalto Center for Information Security
HAIC

June 2016: Strategic initiative by Aalto and UH Deans of Science
 Initial focus: attract top students to our MSc programs in information security
Spring 2017: Tuition waivers (Aalto, UH), funding for “honours contracts” (Aalto)
Spring 2017: Reached out to industry for donations
 F-Secure and Intel (HAIC donors), Nixu (HAIC supporter)

Summer 2017: 3 HAIC scholars (Aalto), 1 HAIC scholar (UH), Annual Report

Call to action: donors for next year

https://haic.aalto.fi/
“Demo/Poster Teasers”
Aalto SSG posters/demos
How can stylometric techniques be used in security/privacy applications?

Stylometry: text classification (author, text type etc.) based on linguistic style

Using stylometry in security analysis
- Detecting online deception
- Classifying troll-messages
- Detecting threats and cyberbullying
- Connecting multiple identities of an author

Adversarial stylometry
- Anonymization via text style obfuscation
 - Methods:
 - Manual
 - Computer-assisted
 - Automatic
Detecting Fake Base Stations with Accurate Positioning

How to detect fake base stations based on signal strength and estimated location?

Fake base station detectors exist but:
• How to prevent user device from talking to base station prior to detection?
• What if attacker imitates genuine base station details (LAC, CID, MNC, MCC)?

Proposed approach:
• Locate base station using signal power.
• Approximate path loss function using ML with regards to topography.

Add on top of existing solutions:
• Power estimation
• Position estimation
Security analysis of direct carrier billing

Can merchants, carriers and payment service providers be trusted with this payment method?

Security Observed
- Access to the service relies on Identification / Authentication features of 3G / 4G networks.
- HMAC codes to authenticate and protect the integrity of messages during the transaction.
- Tokenization to mask sensitive data.
- In-App security checks.
- User account linked to the phone number.

Vulnerabilities already discovered.
How to prevent spatial and temporal memory errors in the Linux kernel?

Prevent Ref. Counter overflows
- Contribute to upstream kernel via KSPP
- PaX/Grsecurity based feature
 - High-performance, safe-by-default
 - High maintenance overhead
- New design `refcount_t`
 - Generic implementation, still in flux
 - Restricted API discourages unsafe use
- Working on kernel wide adoption
 - 233 patches submitted, ~70 landed

Use Intel MPX for pointer bound checks
- Intel MPX support unwieldy for in-kernel
 - Large memory use
 - Reliance on Page Faults
- Adapt MPX for in-kernel usage
 - Support modular coverage
 - Bounds from kernel MM metadata
 - Using custom Linux GCC-plugin

```c
void *ptr = malloc(size);
if (refcount_dec_and_test(obj->refc)) {
    free_obj(obj);
}
```

bit.ly/ssg-kernel
Hardware-supported Call and Return Enforcement for Commercial Microcontrollers

How can Control-Flow Integrity be realized on low-end IoT devices?

CFI CaRE

• First interrupt-aware CFI scheme for low-end (ARM) microcontrollers

• Hardware-based shadow stack protection using ARM TrustZone-M

• Memory layout-preserving binary instrumentation realizable on-device

• PoC implementation on ARM Versatile Express MPS2+

https://arxiv.org/abs/1706.05715
How to defend against Data-Oriented Programming attacks?

Existing security features (NX, ASLR, CFI) cannot resist Data-Oriented Programming (DOP) attacks
DOP attacks access out-of-scope data in memory

HardScope

- enforces variable visibility rules at run-time to stop DOP attacks
- new instructions, compile-time instrumentation, processor h/w extension
- implementation on RISC-V (simulator, h/w) and compiler support

https://arxiv.org/abs/1705.10295
Scalable Byzantine Consensus via Hardware-assisted Secret Sharing

How to improve speed and scalability of blockchain consensus?

FastBFT uses hardware-based TEEs
Fastest and most scalable Byzantine Fault Tolerant (BFT) protocol to-date
Framework representing various design choices;

Improved complexity
- Communication: $O(n^2)$ to $O(n)$
- Computation: minimize public-key operation

Optimized number of active replicas
- Balanced load
- Strong resilience

https://arxiv.org/abs/1612.04997

Jian Liu
Protecting Web Credentials with Trusted Hardware

How to prevent password database breaches using off-the-shelf hardware and without affecting the performance?

- Browser extension that checks if a web server uses SafeKeeper.
- User study with 64 participants showed that average efficiency is nearly 87%.
- Web server applies keyed one-way function.
- Key protected in Trusted Execution Environment.
- Prototype using Intel SGX adds less than 2% performance overhead.

Klaudia Krawiecka
Improving Security and Efficiency of Blockchain-based Cryptocurrencies

How to prevent double-spending in cryptocurrencies?

Problem: Double-spending attack
• Malicious payer can double-spend bitcoins
• Bitcoin recommends waiting for 6 blocks (60 mins)
• Payee can accept payments sooner, but risks loss

Solution: Use Trusted Execution Environment (TEE) to enforce
• Sign-once semantics – Ensure each key signs only one transaction
• Verifiable guarantee to payee – Remote Attestation quote

Proof-of-Concept using Intel SGX technology
• No modifications to Bitcoin protocol or miners
• Instant Bitcoin payments; similar to credit cards
Oblivious Neural Network Predictions via MiniONN Transformations

How to preserve privacy in machine learning predictions?

Cloud-based prediction models increasingly popular but risk privacy:
- clients disclose potentially sensitive input data to server.

MiniONN allows any neural network to be made privacy-preserving
- server does not learn clients' input;
- clients learn nothing about the model;
- More general, significantly faster than prior work.

https://eprint.iacr.org/2017/452
Securing Transparent Authentication

Can we make transparent authentication safer with inertial data?

Transparent authentication (TA) protocols are very convenient, but insecure due to relay attacks.

- User carries a prover device P (e.g. key, phone), and verifier device V (e.g. gate) senses its proximity.
- Attacker can defeat this proximity assumption by deploying a pair of relay devices $D1$ & $D2$.

STASH

- P participates in TA iff current trajectory similar to authorized trajectories to V.
 - Accelerometer & gyroscope measurements
 - Usability-security tradeoff
- Retains high usability of TA, while resisting fraudulent TA requests.

https://wiki.aalto.fi/display/sesy/Contextual+Security+Project
Automated Deauthentication using Web Transaction Analysis

How to detect unauthorized/risky usage of a user account with low overhead?

Automated Deauthentication systems:
• Mostly rely on biometrics
• Need local software / additional hardware
• Do not prevent malicious behavior of authorized users

Our solution:
• Centralized monitoring: no overhead on client host
• Deauthenticates logged-in user deviating from the expected/learned behavior
• Speed: 5.5 minutes
• Accuracy: Recall = 54.5%, FPR = 3.3%

IoT Sentinel: Automated device-type identification for security enforcement in IoT

How to protect smart home network from inherently vulnerable IoT devices?

1. Passively monitor communications and extract device fingerprint

2. Identify device-type using fingerprint

3. Isolation decision based on security assessment of device-type

4. Enforcement of device isolation using traffic filtering

IoT Sentinel: Automated device-type identification for security enforcement in IoT

Samuel Marchal

https://arxiv.org/abs/1611.04880
Securing Ownership Change of IoT Devices

How to protect privacy sensitive data during ownership change of IoT devices?

1. Detect change of ownership based on context
2. Protect owner data using encryption
3. Create new profile/retrieve existing profile profiles
4. Password-based authentication -> decryption of owner profile data

Owner Profile Management
Data Protection
Authentication & Data Retrieval
Ownership Change Detection

Previous Owner
New Owner

Sakib Khan
Remote Monitoring and Failure Recovery of Cloud-Managed Digital Signage

Better diagnosis and recovery for digital signage failures

- Display sends screenshots and logs to the cloud
- Automated log analysis in cloud
- Display configuration managed remotely
- Management scripts from cloud to the display
- **Minimize** downtime and on-site service

Ashish Sultania
Enhancements to Secure Bootstrapping of Smart Appliances

How to enhance the EAP-NOOB protocol?
Nimble out-of-band authentication for EAP (EAP-NOOB) is a protocol for simple and secure bootstrapping of IoT appliances.

- Rekeying and Algorithm Agility
- Timeouts and Failure Recovery
- Handling Parallel Sessions
- Access Control to Network Resources
- Isolation of IoT Devices
- Wired Access
- OOB channel with NFC

UH SSG posters/demos
PMT with Low Communication Complexity

How to preserve end user privacy when querying cloud-hosted databases?

- **Server** divides its database into 2^{2^a} subsets and inserts each subset into a Bloom/Cuckoo filter.
- Divides the filter to b fragments and arranges b matrices of size $2^a \times 2^a$ with fragments of the filters as their elements.

 \[
 \begin{array}{cccc}
 \text{■} & \text{■} & \ldots & \text{■} \\
 \text{□} & \text{□} & \ldots & \text{□} \\
 \end{array}
 \]

 $2^a \times 2^a$

- **Client** finds the matrix index corresponding to his item x.
- Encrypts the index utilizing Homomorphic Encryption.
- Homomorphic encryption allows server to search in the matrix without knowledge of client’s private key.
- **Client** decrypts the result:

 \[
 \begin{array}{cccc}
 \text{■} & \text{■} & \ldots & \text{■} \\
 \end{array}
 \]

Our implementation shows that this protocol can be used in real world applications, for example, for Android app or website reputation services.
Private Graph Search

How can an entity query the graph to find “if there is a path from A to B”, without sacrificing the privacy?

- Two lists of triplets: (user, host, fingerprint) and (fingerprint, user, host), define trust relations between users on different hosts.
- This database can be illustrated as a directed graph.
- The graph owner constructs the transitive closure of the directed graph (tc-graph) and stores the tc-graph into a matrix.
- There are three parties involve in this protocol: Owner of the graph, user and the Cloud.

1) Encrypted graph matrix
2) PIR
3) Decrypt bit blindly

Tommi Meskanen
DoS Attack Against a Solution of Identity Privacy in Cellular Network

How can a pseudonym based solution to defeat IMSI-catchers open a vulnerability to DoS?

Defeating IMSI-Catchers Using Pseudonyms
- Temporary identifiers known as pseudonyms are used instead of IMSI
- Home network (HN) generates pseudonyms and send it to user equipment (UE) piggybacked in authentication vector (AV)
- Pseudonyms keep changing according to an agreed protocol

DoS Attack
- The DoS attack is mounted by a fake UE (FUE) against the whole network
- All the users lose synchronization of the pseudonyms with the home network
- A solution to defeat the attack is proposed in the poster
Database leakage attack against a WiFi fingerprint location scheme using Paillier encryption

How to steal the server’s database and how to fix the problem?

WiFi fingerprint localization (WFL)
• **User**: Measure and send WiFi signal strengths (RSS)
• **Server**: Calculate the user’s location using a RSS database

Privacy-Preserving WFL by Li et al. in INFOCOMM’14
• Paillier encryption protects the user’s location
• Random masking and selection of ANs protect the database

Our attack fully exposes the server’s database
• A realistic assumption:
 User knows 2 locations, where an AN is not available, for each AN
Guest posters/demos
IoT Application Provisioning Service

How to realize a software provisioning service for IoT devices using long-range broadcast communications?

Requirements
- Each app is bound to a specific class of devices
- IoT devices perform seamless updates
- Two major requirements in the update process: authentication and integrity

What is the value?
- The system does not rely on any specific communication technology as long as it is long-range broadcast digital data
- Cheaper alternative to cellular solutions
- No Internet connection-related security threats on IoT devices

Jose Viquez Zamora
Context-based Authentication and Device Pairing

How to pair on-body devices without user interaction?

Device pairing schemes exist but:
• Explicit user interaction, e.g. PIN input
• Revocation only with user interaction
• Static pairing

Our approach
• Gait-based device pairing
• Ad-hoc device-to-device authentication
• Secure session confined to context of use

Evaluation
• 15 subjects
• 7 on-body device locations
• 5 locomotion types (walking, running, descending, ascending, jumping)
Security Evaluation of Password Manager Browser Extensions

LastPass security flaw could have let hackers steal passwords through browser extensions

---theverge.com, March 2017

Password manager OneLogin hit by 'malicious actor' who may be able to de

---wired.co.uk, June 2017

9 Popular Password Manager Apps Found Leaking Your Secrets

---thehackernews.com, Feb 2017

-- Viswanathan Manihatty Bojan, Thanh Bui, Tuomas Aura
Automated analysis of freeware installers

How to automate the analysis of freeware installers?

Freeware installers are notorious for bundling *potentially unwanted programs* (toolbars etc.) alongside with the applications they are expected to install.

What we did

- Automated the whole installation process of an application, including UI interaction
- Monitored system modifications during installation (registry and fs access, network)
- Analyzed hundreds of freeware installers crawled from download portals
- The analysis system supports virtualization as well as analysis on bare metal nodes

What we have learned (so far)

- UI automation is possible with relatively simple heuristics
- Freeware installers often download binaries over insecure channel, which are then executed with elevated privileges (MitM-vulnerability)
- Installers from download portals often distribute PUP, but rarely malware