Cloud-assisted Security Services
Secure Systems Group, Aalto University

cloGer

Aaro Lehikoinen, Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Andrew Paverd,

N. Asokan, Ahmad-Reza Sadeghi

HardScope: Thwarting DOP with Hardware-
assisted Run-time Scope Enforcement

Motivation: Data-Oriented
Programming (DOP) Attacks

 Memory unsafe languages are prone to
memory corruption vulnerabilities

 DOP afttacks corrupt non-control data to e.q.
escalate privilege or leak information

e EXisting security features including NX, ASLR,
CFI are ineffective against these attacks

e Current practical DOP attacks rely on
accessing out-of-scope variables

High-level ldea

e Enforcing variable visibility rules at run-time

e Challenge: Preventing DOP attacks requires
mediating all memory accesses, cumbersome
IN software only

e Solution: Hardware-assisted enforcement
through extensions to instruction set,
processor and compller

e Protects program data at run-time
(e.g., control-data, local and global variables)

» Prevents out-of-scope memory accesses

| / Executable \

Source Code
() funci {

cgll func2(..)

Program
function ®)

} Instruction

func2(a, b) { Instruction

a[@] = b[o], - CALL function

}
function
Instruction

\ Instruction
%

Compiler

@ Instrumentation
Engine

RETURN

DEW:)
y
g

/

new instructions added by instr. engine

Compile-phase design of HardScope

TECHNISCHE
UNIVERSITAT
DARMSTADT

Aalto University

Implementation

e Program code Instrumented during compilation

 Analyze variables used in C program functions

e |nstrument function prologues, epilogues and
call-sites with HardScope instructions

e Hardware assisted run-time enforcement

e Instrumented HardScope instructions maintain
memory access rules during execution

 Rules can be delegated on context switches

 Rules enforced on each memory access

Storage Region Stack (SRS)

« Each SRS frame contains storage regions
accessible from an execution context,

l.e. code block

 Frames are pushed and popped to stack on
context switches

e Permission to access memory from current
context Is checked on each load/store

SRS in protected
memory

Rules for execution contexts

 —"

Active rules
In registers

=

SRS Controller
instruction

HardScope SRS architecture and operations

Evaluation

 RISC-V Instruction set extension, Spike
simulator and Pulpino core hardware support

e Low performance overhead (~7%)

« Small area size in hardware implementation

https://github.com/runtime-scope- https://arxiv.org/abs/1705.10295
enforcement/hardscope-materials

	Slide Number 1

