Below is the papers you can use for the survey assignment for this course. During the first exercise session (Thursday, January 15), you will be asked to indicate a list of three papers that you are interested in surveying. You will be assigned one paper by the following week.

What is expected in the survey

Your survey should contain

  • a summary of the main ideas in the paper you are surveying (1-2 pages)
  • your own synthesis about the topic (1-2 pages): You can structure this part as you see fit. If it helps, you can write your synthesis by attempting to answer questions like
    • Is the paper correct and complete? 
    • Did you identify any flaws?
    • Do you have some ideas on how to improve the solution(s) presented in the paper?
    • How does this paper compare to other related work addressing the same or similar problems?

To write the synthesis part, you are encouraged to read other related papers than the one that you were assigned. For example, you can find related papers by looking at the papers referred to by your assigned paper. You can also search resources like Google Scholar (http://scholar.google.com) with relevant search terms.


List of papers

Nr.LectureTitleDescriptionAssigned toAdditional Info
11The Protection of Information in Computer Systems, Saltzer & SchroderSeminal paper introducing basic concepts in information security. Focus on the "design principles" sectionGuo Wen 

Security Enhanced (SE) Android: Bringing Flexible MAC to Android, Smalley Craig

The official mandatory access control architecture for Android.

Additional references:


Vesa-Matti Kantala 
33A First Look at Firefox OS Security, DeFreez et al.The paper is about lightweight statis analysis that arguments security mechanisms of FireFox OS.Fang Shuqing 
43Old, new, borrowed, blue: a perspective on the evolution of mobile platform security architectures, Kostiainen et al.A comparative survey of some early mobile platform security architectures.Mohammad Zahid 
54Hypervision Across Worlds: Real-time Kernel Protection from the ARM TrustZone Secure World, Azab et al.

Real-time mobile OS kernel protection using ARM TrustZone features as implemented on Samsung Galaxy devices.

64HIMA: A Hypervisor-Based Integrity Measurement Agent, Azab et al.

A design for both load-time and run-time integrity measurement and preservation architecture using hypervisor features.

75Expectation and Purpose: Understanding Users’ Menta l Models of Mobile App Privacy through Crowdsourcing, Lin et al.A new model for privacy based on user experiences analyzed by using crowdsourcing  
85User-Driven Access Control: Rethinking Permission Granting in Modern Operating Systems, Kohno et al. The paper introduces an approach of user-driven access control where permission is granted based on existing user actions in the context of application.  
95When It’s Better to Ask Forgiveness than Get Permission: Attribution Mechanisms for Smartphone Resources, Thompson et al.The paper introduces new design for attribution mechanisms to enhance user experiences.  
105Mobility helps security in ad hoc networks, Čapkun et alA generic technique for establishing security association between nodes in ad-hoc networks.  
115 CRePE: context-related policy enforcement for android, Conti et al.A system to define context-related policies on smartphones at fine-grained level.  

Intuitive security policy configuration in mobile devices using context profiling, Gupta et al.

Using context-profiling to aid access control decisions in mobile devices, Gupta et al.

A context profiling framework configuring access control policies on mobile devices.


A demo of access control configuring based on context.

135Usability Analysis of Secure Pairing Methods, Uzun et al.A comparative usability evaluation of selected methods to derive some insights into the usability and security.  
145Is this app safe?: a large scale study on application permissions and risk signals, Pern Hui Chia et al.The paper presents analysis results on large-scale dataset of community rating used for granting app permissions.  
155Modeling Users’ Mobile App Privacy Preferences: Restoring Usability in a Sea of Permission Settings, Lin et al.

Using static analysis and clustering techniques to identify a small number of privacy profiles to address the problem of mobile app permission granting.

166Quire : Lightweight Provenance for Smart Phone Operating Systems, Dietz et al.The paper introduces Quire with two security mechanisms to address the issue in Android system which allows one app trigger another app.  
176Permission Re-Delegation: Attacks and Defenses, Felt at al.The paper discusses the risk of permission re-delegation in smartphone OS and propose new OS mechanism for dedending again such vulnerabilities.  
186Towards Taming Privilege-Escalation Attacks on Android, Bugiel et al.The paper addresses the designing and implementing a security framework to defend against application level privilege escalation attacks.  
196TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, Enck et al.The paper proposed TainDroid for realtime tracking multiple source of sensitive data via Android’s virtualized execution environment.  
206These Aren't the Droids You're Looking For: Retroffiting Android to Protect Data from Imperious Applications, Hornyack et al.The paper presents how two privacy controls are implemented to empower users in running applications but still preserving data privacy.  
216Semantically rich application-centric security in Android, Ongtang et al.The paper presents a modified infrastructure named "Saint" for install-time permission assignment and their run-time use. Focus on Saint policy section.  
226The company you keep: mobile malware infection rates and inexpensive risk indicators, Truong et al.Mobile malware infection rates are estimated from large number of Android devices. The paper also introduced an indirect method based on a set of running apps to search for infected devices.  
236Mobile Security Catching Up? Revealing the Nuts and Bolts of the Security of Mobile Devices, Becher et al.

This paper provides comprehensive overview of different aspects of the topic of smartphone security. In particular, it surveys mechanisms that are intended to increase the overall security of smartphones.

246Systematic Detection of Capability Leaks in Stock Android Smartphones, Grace et al.

This paper examines impact of firmware customization on the security and privacy aspects. Research results state that stock images provided by smartphone manufactures do not enforce the permission-based security model.

256ASM: A Programmable Interface for Extending Android Security, Heuser et al.An extensible architecture for adding new reference monitors for Android.  
266Towards Continuous and Passive Authentication via Touch Biometrics: An Experimental Study on Smartphones, Xu et al.

Techniques to transparently authenticate mobile users based on their interactions with their devices' touch screens.

276Using contextual co-presence to strengthen Zero-Interaction Authentication: Design, integration and usability, Truong et al.A design and implementation of using audio, radio sensor data to improve security without sacrifying usability of zero interaction authentication.  





  • No labels